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The symmetry of an expression means that, among the parameters and variables, there are certain groups such that the form of 
the expression does not change for the one-and-the same permutation of the elements (or for the permutation of these indices) 
in each of the groups. It is proved that, in the case of symmetrical quadratic forms, symmetrization of the Silvester criterion and 
the Mann criterion by summation of the left-hand sides of inequalities, using the above-mentioned permutation of the indices, 
gives the sign-definiteness criteria. The proof is carried out by induction with respect to the number of variables occurring in 
the quadratic form under the assumption that, in the vector of the variables, the elements of each group do not alternate with 
other variables. The problem of the stability of the orientations of a satellite-gyrostat in a circular orbit with a subsatellite tethered 
to it is considered as an example. © 2003 Elsevier Science Ltd. All rights reserved. 

The use of the criteria for the positive-definiteness of quadratic forms in mechanics is associated above 
all with the stability analysis [1]. In problems of rigid body dynamics, the moments of inertia (Ab A2, 
A3), the components of the angular velocity (ol, o2, ~3) and the direction cosines (al, ~ ,  a3), 
(131, [32, 133), (Y1, Y2, Y3), for example, may be groups in which the expressions for the fundamental dynamic 
quantities do not change under a simultaneous cyclic permutation of the parameters or the variables. 
The existence of symmetry facilitates analytic calculations and makes them clearer and more compact. 

In order to conserve symmetry, it is sometimes advisable not to eliminate redundant variables, and 
not to use the Silvester criterion [1] for the sign-definiteness of a quadratic form and the Mann criterion 
[2] for the sign-definiteness of a quadratic form in a linear manifold, which lead to loss of this symmetry. 

1. SYMMETRIZATION OF THE SILVESTER CRITERION 

In problems of mechanics, the sizes of the groups defining the symmetry of an expression is usually 
equal to 3 or 2, and a cyclic permutation of the indices is considered. To be specific, we shall carry out 
the subsequent discussion for a typical case when s = 3. 

Consider the quadratic form 

~p(x) = xrAx, A r = A 

Suppose that, among the variables x I . . . .  , Xn, groups ([31, 1~2, ~3) . . . . .  (71, 72, 73) are picked out 

xT -'~ (XI . . . . .  Xm, ([31, [32, [33) . . . . .  (71, 72, Y3)) 

and, among the parameters, on which the elements of the matrix A depend, groups (cb c2, c3) . . . . .  
(d 1, d2, d3) are picked out 

A =A(bl . . . . .  bl ,  (ct, c2, c3) . . . . .  (dt, d2, d3)) 

in which we shall carry out a cyclic permutation of the indices (123) without extending it to the variables 
xl . . . . .  xm and the parameters bl . . . . .  bl. 

A quadratic form q~(x) is assumed to be symmetrical in the sense that its-form does not change on 
permuting the indices (123) in the groups which have been separated out. This means that a further 
two terms, obtained frow one another by cyclic permutation of the indices (123), correspond to each 
asymmetrical term in the quadratic form q~. On cyclic permutation of the indices, they simply change 
positions. 
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We shall denote the operation of cyclic permutation by a prime 

(123)' = (231), (231)' = (312), (312)' = (123) 

x "r  = ( x l  . . . . .  Xm, (1~2,133, 13t) . . . . .  (~'2, ' 5 ,  "it)) 
A" = A(b I ..... b t, (c 2, c 3, q ) ..... (d 2, d3-, d I)) 

x ' r  A'x  " = x r  Ax 

We shall denote the operation of summation with respect to a cyclic permutation of the indices (123) 
in the groups of variables and parameters which have been picked out by E. For example 

 :(c2 + c3)13  + + + (c ,  + c,)13  = 

The principal diagonal minors Ai of order i of the matrixA are on the left-hand sides of the inequalities 
of the Silvester criterion for the positive-definiteness of a quadratic form q0(x). The minor Ai can be 
considered as the determinant of the matrixA (i) of the quadratic form 

tp(i). (i). 1 (i)T,,{i) (i) ~ x(i) tX ) = ~ x  :t x =¢#(x , =eol(x  I, .... Xi) Z. I Xi+ I = . . . =  X n = 0  

(1.1) 

which is obtained from to(x) by equating the last n - i components of the vector x to zero. If A i corresponds 
to the part of the vector x with a cut-down cyclic group of variables, then the magnitude of Ai will change 
on cyclic permutation of the indices. Hence, we obtain three versions of the Silvester criterion 

t ¢¢ A j > O  . . . . .  A n > 0 ;  A ; > 0  . . . . .  A n > 0 ;  A~'>0; .. . .  A , , > 0  (1.2) 

The basic result of this section lies in the proof that the symmetrized conditions 

ZA 1 > 0  . . . . .  XA,, > 0  (1.3) 

also give the criterion for the positive-definiteness of the quadratic form to. Here, we have in mind a 
summation with respect to a cyclic permutation of the indices of the parameters of the separated groups 
which implicitly occur in the determinants Ai. These parameters appear explicitly in the expanded 
expressions for the determinants Ai. 

The necessity of conditions (1.3) is obvious, since the sum of positive numbers is always positive. The 
sufficiency is not so trivial. We will now show that not every summation of the left-hand sides of the 
Silvester criterion with respect to permutation of the components of the vector x gives a criterion of 
positive-definiteness. For example, in the case of an incomplete summation (two terms) with respect 
to the cyclic permutation of the variables (xl, Xe, x3)' = (x2, x3, Xl) and the parameters (Cl, c2, c3)' = 
(Cz, c3, cl) for an alternating-sign quadratic form 

,Y,c, x 2 = 2x 2 - x~ - 3x 2 = -x ;  2 - 3x~ 2 + 2x; 2 

we obtain 

A I + A ~ = 2 - 1 > 0 ,  A 2 + A [ = - 2 + 3 > 0 ,  A 3 + A ~ = 6 + 6 > 0  

Before proving the sufficiency of the symmetrized Silvester criterion (1.3), we will present a further 
well-known criterion of positive-definiteness. It is obvious that, whatever the quadratic form t0(x), a large 
number t~* > 0 is found such that the quadratic form @(o) = to(x) + ox z will be positive definite when 
a t> a*. It also remains positive definite when cr = 0 if, as c~ varies continuously from a* to zero, the 
determinant of the matrix of the quadratic form @(c~) (henceforth Ei is an (i x i) identity matrix) 

(let (A + aE n) = a n + ala n-I +. . .  + an (1.4) 

does not degenerate or, what is the same thing, does not have negative roots, which will occur in this 
and only in this case when 

a I > 0 . . . . .  a.  > 0 (1.5) 
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The coefficients ai are symmetrical functions (in the above-mentioned sense) since they are equal to 
the sums C/n of the diagonal minors of order i of the matrixA and these sums, in particular, also contain 
a summation over a cyclic permutation of the indices (123) in the groups which have been separated 
out. Hence conditions (1.5) also give a symmetrical criterion for the positive-definiteness of the quadratic 
form ~0(x) = O(0), but they have a more complex structure than criteria (1.2) and (1.3). 

We shall prove the sufficiency of criterion (1.3) by induction with respect to the number of variables 
occurring in the quadratic f o r m  q)(i)(x(i)) (1.1), under the assumption that the variables of each group 
do not alternate with the other variables in the vector of the variablesx. We will carry out the induction, 
while conserving the symmetry of the function q)(i)(x(i)). 

We take q~0)(xl) as the basis of the induction ifx~ does not occur in any cyclic group, a n d  q)(3)(X(3)) if 
Xl, X2, X3 form a cyclic group. Neither quadratic forms change under a cyclic permutation of the indices 
and the criterion (1.3) holds, since it is identical to condition (1.5) for both of these quadratic forms. 

Thus, suppose criterion (1.3) holds for a symmetrical quadratic form q)(i). We shall prove that it holds 
f o r  (p(i+l)(x(i+l)) ifxi+l does not occur in the cyclic groups and, f o r  (D(i+3)(x(i+3)), ifxi+l,  xi+2, xi+3 form a 
cyclic group. 

We will first consider the case of the quadratic f o r m  (p(i+l)(x(i+l)). We will prove that it is positive 
definite when a condition of type (1.3) is satisfied 

~ 1  > 0 . . . . .  ~d~i+ 1 > 0 (1.6) 

It follows from the first i conditions of (1.6), under the assumption of the induction, that the quadratic 
f o r m  (p(i)(x(i)) is positive definite and the Silvester conditions (1.2) are therefore satisfied by it 

A 1 > 0 .. . . .  A i > 0 (1.7) 

By virtue of the assumption of the symmetry of the quadratic form ~0 (i+ 1)(x(i+l)), the largest principal 
diagonal minor Ai+ 1 is independent of a cyclic permutation of the indices and is identical to the left- 
hand side of the last inequality in (1.6), apart from a factor of 3. This inequality and conditions (1.7) 
constitute the Silvester conditions for ~(i+'a)(x(i+l)), and also proves that it is positive definite. 

We will now prove the positive-definiteness of the quadratic form q~(i+3)(x(i+3)) assuming that it is 
symmetrical and that the conditions 

~'~1 > 0 . . . . .  Y-Ai+ 3 > 0 (1.8) 

are satisfied. 
By virtue of the assumption of the induction, the positive-definiteness of the quadratic form q)(i)(x(i)) 

and the satisfaction of conditions (1.5), which take the form 

a~ i) > 0 . . . . .  aft ) > 0 (1.9) 

follow from the first i conditions of (1.8). 
Consider the quadratic form 

. (p)=~(i+3)(x(i+3))+~X?+ ! +.I"?+2 + X?+3) = x(i+3)T~ {i) B Ix(i+3 ) 

II o.,-0e3n 

where the matrices B and D contain elements which extend the matrixA (i) to A (i+3). 
In the case of this matrix, relation (1.4) has the form 

A(i)B T+OEi D + (pB+ o)E3 1= (~i+3 +(3p+a~i+3))ffi+2 +(3p2 + p,~a~i+2) + a(i+3)2 )ffi+l + 

+ (p3  + p2~a~ i+ l )  + p ~ l ~ i + 2 )  + a~i+3))ffi ~_ t,,.3_(i) ± ^2v,~(i+l)  ~ ,~,r~(i+2) + a(4i+3))~i-1 + . . .  
-i- I.V tal 1- V ~"°2 1- la,a~t~ 3 

n3,,~(i) .t. t~2 $"~( TM ) ~ e,~'~( i+2 ) .4-,,I (i+3) (1.10) 
. . . .  I" '~i T I" ~"~i+1 w I.,~..~i+ 2 - -  ~i+3 

In the case of fairly large positive p, the coefficients of the different powers of ~ in (1.10) will be 
positive, since they are polynomials in powers of p with positive coefficients (by virtue of conditions 
(1.9)) of the leading powers of p. Consequently, on the basis of criterion (1.5), the quadratic form ~(p) 
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will be positive definite with respect to x (i+3). In order that it should remain positive definite when p = 
0, it is sufficient that the roots (with respect to p) of the determinant of its matrix 

f(p) = I A (i) B [ = p3a~i) ±,,2v.(i+l) ±,.v.(i+2) .(i+3) 
I Br D+pE 3 "v "-"i+l "-m-,"i+2 +~'i+3 (1.11) 

should be negative or, what is the same thing, that the coefficients of the polynomial (1.11) should be 
positive. Taking account of the relation 

a(i+i) ~(i+2) t,(i+3) 
i+1 = Ai+I, ~i+2 = Ai+2, "i+3 m Ai+ 3 

we conclude that the last three coefficients in equality (1.11) are exactly equal to the symmetrized left- 
hand sides of the last three inequalities of the Silvester criterion (the first is positive by virtue of conditions 
(1.9)), which proves the positive-definiteness of the quadratic f o r m  (p(i+3)(x(i+3)). 

Remark 1. In practice, it is sometimes convenient to calculate the quantities Ai+3, ~Ai+2, ~Ai+ 1 by 
differentiating the determinant (1.11) with respect to p 

Ai+3 = f(O), ~.,Ai+2 =df(O)ldp, ~,Ai+l = Y2d2 f(O)ldp 2 

Remark 2. The positive-definiteness of the f u n c t i o n  f~(i+l)(x(i+l)) could be proved in the same way as 
for  f~(i+3)(x(i+3)) and not on the basis of the Silvester criterion. The necessity can also be proved without 
using the Silvester criterion by the same induction and taking account of the relation al i) = Ai. In 
particular, the proof of the Silvester criterion will then follow from this proof. 

Remark 3. The proof in the case of symmetry with s = 2 is obvious by simplifying the proof for s = 3 
carried out above. 

2. S Y M M E T R I Z A T I O N  OF THE MANN C R I T E R I O N  FOR 
THE P O S I T I V E - D E F I N I T E N E S S  OF A Q U A D R A T I C  

F O R M  IN A L I N E A R  M A N I F O L D  

We will now consider the problem of the positive-definiteness of a quadratic form in a linear manifold 

cp(x)=xrAx (A r=A) ,  u=Bx=O 

where x and u are n-dimensional vectors, k < n, and we introduce the quadratic form 

¥= q~+pu  2 

where p is a positive number as large as desired, representing it in the two different forms 

¥ = f (x)  = xrAx + pxrBrBx = xrFx 

and 

where 

~t = g(u, x) = xr Ax + p(2ur Bx - u s) = yr Gy 

A,o:, -°',,, ':n y l:M 
We will calculate the determinant of the matrix G, for which we add its first row, multiplied by B r 

on the left, to the second row and expand it with respect to the first column. We obtain 

pB k 
detG=l-P0 E' F l = ( - p ) d e t F  (2.1) 
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On the other hand 

det G = p2k det H(~), H(~) = B r  = H(0) + o(1) (2.2) 

e = - ,  H ( 0 ) = D =  
P 

Comparing relations (2.1) and (2.2), we obtain 

det F = (-1) k det Dp k +...  

Terms with powers of p less than k are indicated by dots. 
By exactly the same arguments with the truncated quadratic form ~Ci)(x(0), obtained by successively 

equating the last n - i components of the vector x to zero, it can be shown that similar relations hold 
for the principal diagonal minors 8i and Ai of order i of the matrices F and D 

8i = (-1)kAk+iptc + .... i = n  . . . . .  k + l  (2.3) 

~i = ~i~P i + .... i = k . . . . .  1 (2.4) 

Here, 5 ° is the sum of the squares of all possible minors of order i of the first i columns of the matrix 
B. 

The symmetrized Silvester criterion (1.3) for the positive-definiteness of the quadratic form f(x) takes 
the form 

5:8 i > 0, i = 1 .....  n (2.5) 

By virtue of relations (2.4), the first k conditions of (2.5) are satisfied in the case of  non-degeneracy 
of the determinant composed of the first k columns of matrix B. This constraint can be replaced by the 
requirement of the completeness of the rank of the matrix which comprises the first k + 1 columns of 
the matrix B, since the following principal diagonal minors of order i > k do not change under a 
permutation of  the first k + 1 rows in the matrix F with the same simultaneous permutation of its first 
k + 1 columns. If, in the quadratic form q~(x), the variablesxk+~,xk+2,xk+3 constitute a cyclic group, the 
first k inequalities in conditions (2.5) will be satisfied, subject to the requirement of the completeness 
of  the rank of the matrix which is made up of the first k + 3 columns of  the matrix B. 

On comparing the last n - k inequalities in (2.5) with relations (2.3) and taking account of the identity 
W(x) = q~(x) when u ---//x = 0, we obtain the symmetrized Mann criterion for the positive-definiteness 
of the quadratic form q~(x) in the linear manifold u = Bx = O. 

(--1)kS'-Ai >0,  i = 2 k + l  .. . . .  n + k  (2.6) 

which is the main result of this section. 
If the Silvester criterion (1.2) is taken as the criterion for the positive-definiteness of the quadratic 

formf(x) instead of  conditions (1.3), the same arguments provide a proof  of the Mann criterion [2] 

(-l)kAi > 0, i = 2 k + l  . . . . .  n + k  (2.7) 

The Mann criterion has been repeatedly proved (see [3], for example). The derivation which has been 
presented above provides a further method for proving this criterion. The matrixD, which occurs in the 
Mann criterion, was examined long ago by Weierstrass in the problem of a conditional minimum [4]. 

The Weierstrass criterion is formulated in terms of the eigenvalues of a quadratic form q~(x) in a linear 
manifold u = 0 and is equivalent to the inequalities 

a i>O,  i = 2 k + l  .. . . .  n + k  (2.8) 

where a i are the coefficients of  the equation 

[0 B I A(o) = = (-1)k(a~ko "-k + . . -+  a,,+k) = 0 B T A + ¢$E n +a2k+ll~n-k-I (2.9) 
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The coefficients a i represent the sums of all possible diagonal minors of the ith order with the sign 
(-1) ~ of the matrix D which border its principal diagonal minor of the kth order, consisting of zeros. 
The coefficient a2k is equal to the sum of the squares of the determinants of order k, comprising the 
columns of the matrix B. Actually, the Weierstrass criterion corresponds to the complete symmetrization 
of the Mann criterion, and only requires the completeness of the rank of the matrix B. 

We will now give a convenient formula for evaluating the determinant 

0 

which is obtained by an expansion in minors of its first k rows and columns 

( -1 ) 'A=Y .A , s ,  Bs ,~ t ,  As,s, =As,,,, ~, - - ' ( - I )  '~+'''+'~ B, (2.10) 

Here, Bs~ (i = 1 . . . . .  m) are all non-zero determinants composed of columns with the numbers 
s' = (s~, s~, . . . ,  s~) of the matrix B, and As~,j are the minors of the matrix A, which are obtained by 
deleting from it the rows with the numbers s i = (s~, si2, ... , Sik) and the columns with the numbers 

s J :  (s{, si, . . ,  

Remark 4. The obvious relations 

a~k+i = (-1) k 
dn-k-iA(O) 

(n - k - i)[d~ n-k-i 

may also be useful when calculating the coefficients a i from inequalities (2.8). 

3. EXAMPLE 

As an example, we will consider the problem of the stability of the relative equilibrium orientations of 
a satellite gyrostat with a subsatellite suspended from it on a long massless tether in an orbital system 
of coordinates for a circular orbit. This problem is a generalization of the problem considered earlier 
in [5]. By the term gyrostat, we mean a system consisting of a rigid body and symmetrical rotors 
(gyrodynes) with fixed axes of rotation similar to the "Mir" space station. For simplicity, we will assume 
that the motion of the system relative to its centre of mass does not affect the orbit of the centre of 
mass, that the tether length is much greater than the dimensions of the satellite and much less than 
the radius of the orbit of the centre of mass, and that the mass of the subsatellite is much less than the 
mass of the satellite. 

We will determine the equilibrium orientations and the conditions for their stability from the 
conditions for a minimum of the changed potential energy of the gravitational and inertial forces acting 
on the satellite which, under the assumptions which have been made, can be written in the form 

W(Y'~I)= Y{  302AIY~ - 1 -  2" a2 -3m°2Ll lY l - tak l~ l  ta alPl 

Here to is the Kepler orbital angular velocity, m is the mass of the subsatellite, L is the length of the 
tether A i a r e  the moments of inertia of the satellite with the rotors about the principal central axes of 
inertia xi; Y,, 13, are the projections of the radius vector of the centre of mass of the satellite and the 
vector of the normal to the orbital plane onto the axes of the unit vectors y and 13, and ki, li are the 
projections of the gyrostatic momentum vector k (the vector of the relative angular momentum of the 
rotors, which is assumed to be constant) and the radius vector of the point of suspension of the tether 
relative to the centre of mass of the satellite. 

In the expression for W, the equilibrium vertical orientation of the tether has been taken into account. 
This is not inconsistent with the general problem of a minimum, since this orientation of the tether 
yields a minimum in the changed potential energy for any fixed values of the direction cosines Yi, 6,. 

The variables Yi, 15, are connected by the obvious geometrical relations 

V = y 2 - 1 = O ,  X = y ~ = O ,  ¢ # = B 2 - 1 = 0  (3.1) 
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Introducing the function V with the Lagrange multipliers L, ~t, v 

I .  . 1 1 
v(x, It, v, `/, 1}) = ~. w + A.Z + ~.p.~ + ~-wp = 

= T ' { I  (p.+3AI)`/21+I ( v -AI )1}~ -q I ` / I -p ,1} , }  
1 

q = 3mLl, p = -:-k 

we write the equilibrium equations in the form 

aV I ~Ti = (it + 3A i)`/i + X1}i - qi = O, i = 1, 2, 3 (3.2) 

av/a1}~ =a,`/i+(v-A~)1},-Pi =0, i=1 ,2 ,3  (3.3) 

It is clear from Eqs (3.2) and (3.3) that any specified orientation of the satellite, which is determined 
by the direction cosines (% 13 3, that satisfy conditions (3.1), can be made the equilibrium orientation 
by the suitable choice of the parameters qi, Pi and that there is a certain arbitrariness in this choice, 
which is determined by the free parameters ~., Ix, v. 

The parameters ~t and v have a simple geometrical meaning. On multiplying Eqs (3.2) by Yi and 
Eqs (3.3) by 13i and summing over i = 1, 2, 3, taking account of relations (3.1), we obtain 

p. = T.q,7, -3T..A,`/~, v = Zp,1}, + T..A,1}~ (3.4) 

The geometrical meaning of ~. is less obvious. 
The equilibrium orientations considered on the basis of the Lagrange and Kelvin theorems [1] will 

be stable if the specified values of y/, I~i turn the function Winto a minimum under the conditions (3.1). 
For this to be so, it is sufficient that the quadratic part of the function V 

(p(X) = ~52V/2 = x T A x  

should be positive definite in the linear manifold Bx = 0, where 

Ro 
x =  St  } ' A = ~ =  XE 3 

a(x ,¥ ,~ )  ~1}~ 1}2 1}3 
B= a(`/,1}) = 1~  I `/2 "f3 0 

0 0 1}1 

a2v 
c = ~ = diag(c I , c 2, c 3 ), 

`/l "/2 73 
0 0 

I}2 I}3 
a 2 v  , 

D = ~ = dlag(d l, d 2, d 3) 
op- 

C i = V -- A i ,  d i = la + 3 A  i 

(3.5) 

We will use criterion (2.6) to solve the problem. In the case of this criterion, we initially calculate 
the determinant 

0 

Using formula (2.10), we obtain 18 non-zero determinants which can be made up from the columns 
of the matrix B 

k/56 :(-1)i+l`/ iOtl ,  ki46 = i+l " =(_1) i+!  (--1) `/lOt2, Bi45 `/iCt 3 (3.6)  

B23i÷3 = (-1)i1}i°q, ~3i+3 = (-1)i1}ia2, /~12i+3 = (-1)i1}ia3, i = 1, 2, 3 
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The following non-zero additional minors of the matrix A (Asisj = Asjsi) correspond to these 
determinants 

AI56 156 = qd2d3,  A~6  256 = qd ld3  - d3 z'2, A356 3s6 = qd ld2  - d2 ~'2 

A234 234 = dlC2C3, A235 235 = diClC3 - c3 ~2, '4236 236 = dlclc2 - c2 ~'2 

AI56 234 = ~3, A235 256 = A236 356 = Z3 _ Cldl ~ 

A2,16 345 =( - l ) ld l  ~'2, Ai35 126 =( - l ) l c l  Z2 

A246 126 = (-1)1c2d3 ~', A345 135 = (-1)1c3d2 ~ 

(3.7) 

and, also, the minors which are obtained from formulae (3.7) by simultaneous cyclic permutation of 
the indices (123) and (456). Here, the exponent accompanying the minus one is also to be considered 
as a cyclically varying index. 

Substituting the values of (3.6) and (3.7) into the equality (2.10) we obtain 

2 2 2 2 
- A  -- ~_.L/10t I ]~[~1 C2C3 + ~'Cl0tl ~'~1 d2d3 - ~'2 (~'Cl'~ + ~dl[ ~2 ) (3.8) 

Taking account of expressions (3.5) for ci, we represent expression (3.8) in the form of a quadratic 
trinomial in powers of v 

-A(v)  = av 2 + bv + c 

a = YA, a 2, b = - a Z ( A  2 + A 3 )1~ + ~V_.d2d3Y ~ - ~2 

c = aZA2A3~ ~ - Y_,A,a2y.,d2d3Yi 2 - ~.2 (~d,[3~ - ZAty 2) 

On writing out determinant (1.4) for this case 

a(v + o)  2 + b(v + o)  + c 

and taking account of Remark i on the differentiation of determinant (1.11), we can write the stability 
conditions in the form 

a > O ,  2 a v + b > 0 ,  a v 2 + b v + c > 0  (3.9) 

Determinant (3.8) can also be represented in the form of a quadratic trinomial in powers of Ix 

-~(IX) = ,~t 2 +/;~t + 

t] = Zcla ~, /~ = 3aY.(a 2 + a3)y 2 + ,~c2c31~ ~ - ~.2 

= 9a~A2A3y 2 + 3ZAzo~Zc2c3[3 ~ - k 2 (,T, cly ~ + 3~AI[~ 2) 

The stability conditions then take the form 

fi>0,  2fi~t+/~>0, fil~2+/~lX+~>0 (3.10) 

The calculations presented demonstrate the use of the criteria of positive-definiteness of symmetrical 
quadratic forms, which have been obtained in the preceding sections. Here,  we shall not concern our- 
selves with analysing the stability conditions which have been obtained and with determining the optimal 
values of the parametersp and q which ensure equilibrium and stability. We shall merely confine ourselves 
to the remark that conditions (3.9) and (3.10) can be satisfied for any required orientation of  the satellite 
owing to the choice of the free parameters Ix, v, and ~.. 
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